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Type 2 diabetes
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Figure: http://www.cdc.gov/diabetes/pubs/statsreportl4/diabetes-infographic.pdf



http://www.cdc.gov/diabetes/pubs/statsreport14/diabetes-infographic.pdf

What is type 2 diabetes?

Two major players:
¥ glucose main energy source for most cells

¥ insulin produced by pancreatic B cells;

signals cells to take up glucose from blood
The disease:
¥ defined by severe hyperglycemia

]
caused by combination of

= insulin resistance
m p-cell failure

¥ influenced by genetics and environment
L]

characterized by insufficient insulin

+
Environment

Insulin B-cell
resistance failure

Type 2 diabetes







Type 2 diabetes dynamics
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Type 2 diabetes dynamics
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The problem: precise mechanisms ofthe

development of insulin resistance and
B-cell dysfunction are unclear.







Where we begin

Insulin resistance is a cellular antioxidant
defense mechanism
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Skeletal muscle insulin resistance
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Oxidative stress accumulation of reactive oxygen species,

e.g., superoxide, hydrogen peroxide







Skeletal muscle insulin resistance
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Subsystem |. superoxide production

Cytosol

Intermembrane space

Glucose N Mitochondrial matrix

Pyruvate

¥ e-: electron » MnSOD: antioxidant, manganese
® H+: proton superoxide dismutase
® O, : superoxide ¥ H,0,: hydrogen peroxide







Subsystem |. superoxide production

Glucose T
Plasma

Cytosol

¥ ETC: electrontransport chain ¥ MT: mitochondrial







Subsystem | equations
? AG reference parameter for food intake, with ¢ an increasing function of AG.

mitochondrial function variable; form specified in feedback coupling.

?F
Plasma glucose: I + h = kg G = |
' dt K2 T 3 ‘ R
food intake production insulin-independent insulin-dependent
dl G2 uptake uptake
Plasma insulin: _ hiB — kil
dt & +G {z}
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uptake fronT plasma gjucose processing




Subsystem | equations

? AG reference parameter for food intake, with ¢ an increasing function of AG.
? F  mitochondrial function variable; form specified in feedback coupling.
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Mitochondrial dysfunction: assumptions

—altered respiratory activity

® damaged mitochondrial lipids/proteins







Mitochondrial dysfunction: assumptions

—altered respiratory activity

® damaged mitochondrial lipids/proteins

Feedback model I: Mitochondrial Inefficiency Model (MIM)

dL X2 RS/(RS"' AS)

at D where X RoRG+A%)
=Fmm=1-L
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Mitochondrial dysfunction: assumptions

—altered respiratory activity

® damaged mitochondrial lipids/proteins

Feedback model |: Mitochondrial Inefficiency Model (MIM)

dL X2 Rs/(Rs + As)
E f(l —L)mwhere X m -
:)F|\/|||\/| =1 -L

—sabnormal population dynamics

1.

= ‘sufficient’ mutant mtDNA clonal expansion

® mitochondrial swelling and membrane permeability
|

stress from accumulation of damaged content







Skeletal muscle insulin resistance
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MARS: A network theory of aging
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Subsystem Il: mitochondrial selection

growth C Undamaged Damaged D growth

turnover turnover







Modeling mitochondrial selection: setup

/“\
bo CQ? CT)D by

Two-state stochastic model
Mo(t) := the number of healthy (class Co) mitochondria at time t
Ma(t) :=the number of damaged (class Ci) mitochondria attime

t Mo(t) + My(t) K forall t; K isconstant

Parameters

) sr ;= fractional replicative difference)
¥ selectionparameters g4,1)

sm := fractional turnover difference

by (1+s)bo
wdy (1+sm)do




“Null selection” =

Sm=5Sr=0



Modeling mitochondrial selection: state transitions

Assume that each mitochondrial turnover event results in a growth event.

Transition matrix

A

Transition probabilities
Pi PI’(A;L/NIO
g Pr(AxMo

= Pr(A3/f\/|o

i)

i)

)

di(K=i) (1 -p)boi
do i+ d1 (K -i) bl%i+ bl(K —i)
. (| h }
d|+c§”"<—|) bgi tQigK_')

I {z i {z }

death from Co transition/birth to C1

1 —pi —i







Mean time to total damage

Let T; := the expected time to total damage starting from i healthy mitochondria.
LetEi:=the meanwaitingtime betweeneventsforMgy |, i.e.
Ei [doi +di(K —i)]™t.

Ti QJ!L;l F Ei) + (1 —pi —qi)(Ti + Ei) +pi(Ti+a + Ei)

I I {z N I U2
Iose E health one no change gain a healthy one
= -Ei ¢ilTi—1 ( i+ qI)TI + PiTi+1
Solution N" Kk Knj—1 #
TI T0"' ’7j+1 + r’K—m pK—n
j=0 m=0n m+1
Ei Pi
fori 1,...,K =1, with n; q_lp, q_I’TO Oand Tk Nk + Tk,
i i

With null selection and constant u: Tk =400 years.







Superoxide-to-damage feedback

h (¢ )i
® damage transition: u(t) :=po 1+p M,;S? =l

® probability distribution: z;(t) := Pr(M,
Master equation:

dmo

ot —Qomo + P17y, . .

)

dr; R R . .

Ftl G-17j-1 —@j + Pj)7j + Pj+1 i+, - - .
dnK ~ ~
- q T P 7

K-1 K-1 KK
dt

1 X
D(t) = Pr(M: 21) = =

¥ damage likelihood:







Feedback models | — IV: specifying F
Complex: ¢  V2KgiGi(Ciot =C) —keC[(1 —ar)F + ar]

|

Fvwmv=1-L

FLvpm = (1 —D) + D ‘(1 —L)




Frvom = (1 —L)(1 -D)




Results I: null selection
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[ejg & Adler, 2014]
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Results IlI: response to mitochondrial selection

Replicative difference
Superoxide ( 10°

Turnover difference (sm)
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[
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Recall: s, = (bi/bo)—1; sm = (di/do) -1

[ejg & Adler, 2014]




Results IV: response to selection parameters

compute age at which
superoxide concentration
exceeds threshold of
10-4 uM

Zone 1: sy > sm
Zone 2: Sy < Sm

physiological restriction:
Sm = 0

[ejg & Adler, 2014]




Why insulin resistance is bad for you, good for your cells

In susceptible individuals:

Intracellular response
1 glucose uptake (good for you, bad for the cell)
1 superoxide production
mitochondrial dysfunction

1 oxidative stress

lglucose uptake (bad for you); |superoxide production (good for the cell) |

stress signal activation; impaired insulin signaling

Systemic response

| glucose uptake (bad for you)




1 glucose uptake



Thank you!
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