All News

Journal Article: Associate Professor of Physics Xuemei Cheng

April 20, 2017

Effects of biaxial strain on the improper multiferroicity in h-LuFeO3 films studied using the restrained thermal expansion method

Authors:
Sinha, K; Zhang, YB; Jiang, XY; Wang, HW; Wang, X; Zhang, XZ; Ryan, PJ; Kim, JW; Bowlan, J; Yarotski, DA; Li, YL; DiChiara, AD; Cheng, XM; Wu, XF; Xu, XS

PHYSICAL REVIEW B, 95 (9):10.1103/PhysRevB.95.094110 MAR 14 2017 

Abstract:

Elastic strain is potentially an important approach in tuning the properties of the improperly multiferroic hexagonal ferrites, the details of which, however, have been elusive due to experimental difficulties. Employing the method of restrained thermal expansion, we have studied the effect of isothermal biaxial strain in the basal plane of hLuFeO3 (001) films. The results indicate that a compressive biaxial strain significantly enhances the K3 structural distortion (the order parameter of the improper ferroelectricity), and the effect is larger at higher temperatures. The compressive biaxial strain and the enhanced K3 structural distortion together cause an increase in the electric polarization and a reduction in the canting of the weak ferromagnetic moments in hLuFeO3, according to our first principles calculations. These findings are important for understanding the strain effect as well as the coupling between the lattice and the improper multiferroicity in hLuFeO3. The experimental elucidation of the strain effect in hLuFeO3 films also suggests that the restrained thermal expansion can be a viable method to unravel the strain effect in many other thin film materials.